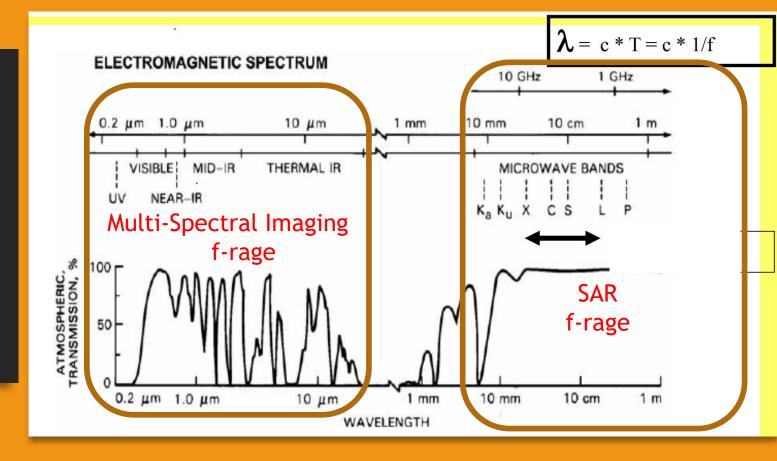

Tech Brief: Imagery vs SAR for Military Applications

Paul Struhsaker Arrasar Partners www.struhsaker.com/arrasar-partners


Synthetic Aperture Radar vs Imagery: An Introduction

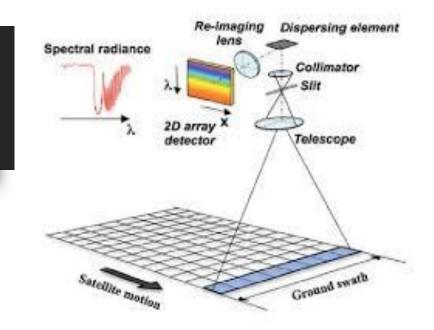
- Earth Observation is conducted using Active and/or Passive Sensors
 - <u>Passive Sensors</u>: Based on solar reflection in visible, infrared, thermal infrared, and uwave bands of EM spectrum.
 - Cloud coverage and night side of the earth can limit operation
 - IMAGERY is based on Passive Earth Observation
 - <u>Active Sensors:</u> Based on satellite emitting and receiving reflected energy
 - Generally all-weather operation
 - SAR is an Active Earth Observation Sensor
- Key Systems Parameters for EO satellite
 - Spatial Resolution: size of object/features being measured
 - **Spectral Extent:** breadth of electromagnetic spectrum sensed
 - <u>Radiometric Resolution</u>: number of digital levels expressed in the data collected
 - <u>Temporal Resolution</u>: intervals between imagery acquisition

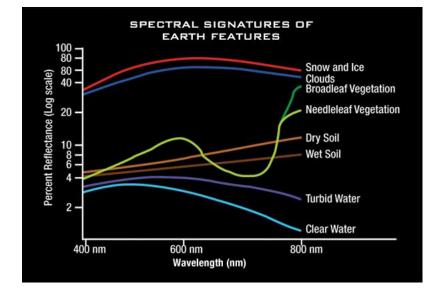
Electromagnetic Spectrum SAR and Imagery capture two distinct reflected spectral components

Tech BriefechnagefyEQs WARAR Ribitathsakpolications-Pastnensaker, Arrasar Partners

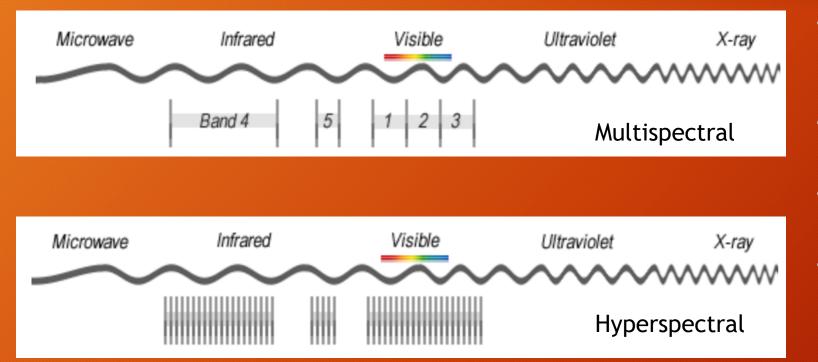
Earth Observation a brief history

- 1951- Carl Wiley (Goodyear Aerospace) develops then patents the SAR concept
- 1960 Tiros-1 weather satellite
 - 2 visible spectrum cameras 10 satellites launched
- 1964 Nimbus-1 to 1978 Nimbus 7
 - introduced multi-spectral scan (MSS) w/uwave for water vapor detection
- 1974 Landsat 1 to 2013 Landsat 8
 - MSS progressed from 3 bands to 11 bands
- 1974 GEOS series 1st Geostationary orbit EO satellites
 - GEOS-17 launched 2018 -program on going
- 1978 SAR introduced on NASA SEASAT
- 1986 SPOT program commercial earth observations
- 1990 -2010 sensor types expand
 - 10 countries/regions (EU) operate EO/meteorological satellites
- 2010's Nano/cube Sats miniaturization w/full capabilities


Imagery Overview

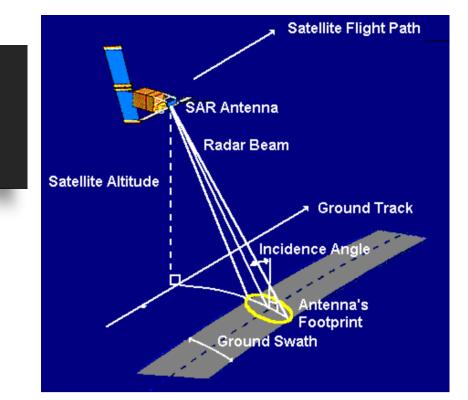

5

Imagery - Visible, Infrared, and beyond


Imaging Sensors

- Imaging Radiometer: two-dimensional array of sensors scanned electrically or mechanically
- <u>Spectrometer</u>: uses a prism or grating for spectral discrimination
- Earth Features and materials reflect specific spectral components
 "Spectral Signatures"

Imaging Technology Evolution: Multispectral to Hyperspectral

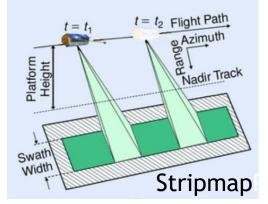

- Multispectral: typically 3-10 frequency bands - relatively wide bands
- Hyperspectral: Hundreds of narrow bands
- Evolution through a multiple decades of technology advances
- Advantages of Hyperspectral:
 - Capture all data at one time
 - More accurate segmentation and classification of the image
- Disadvantages of Hyperspectral:
 - Cost and Complexity

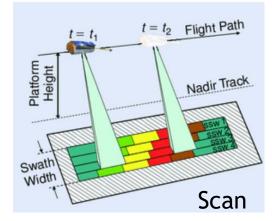
SAR Overview

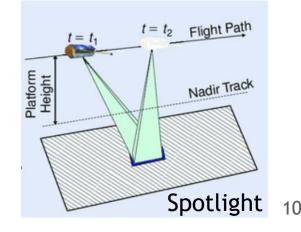
8

What is SAR?

- <u>Synthetic-aperture radar (SAR</u>) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes
- The distance the SAR device travels over a target in the time taken for the radar pulses to return to the antenna creates the large synthetic antenna aperture
 - A 450 Km orbit LEO SAR Sat has synthetic aperture <u>~0.9 km</u>
- SAR can create high-resolution images with relatively small physical antennas - <u>PERFECT for LEO CubeSats</u>
- LEO X-Band SAR can achieve resolutions < 50 cm
- Interferometric (InSAR) and differential Interferometric (D-InSAR) processing can approach GPS in accuracy

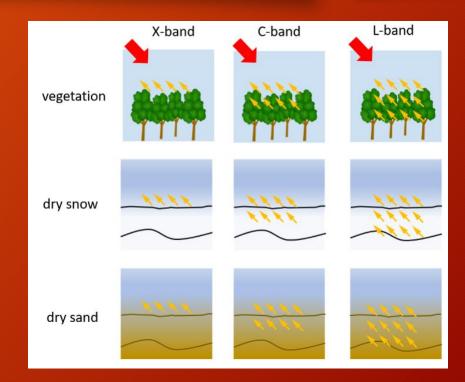

Types of SAR Systems


• <u>Stripmap mode</u>


- Antenna remains fixed relative to the orbit path
- Terrain is illuminated with a pulse repetition radar signal
- Backscatter of radar pulses cumulatively added on a pixel-bypixel basis to attain the fine azimuth resolution desired in radar imagery

• Scan mode:

- Antenna beam sweeps periodically and thus cover much larger area than the spotlight and stripmap modes
- Resolution is reduced but a far greater area is scanned
- Spotlight mode:
 - Radar is steered at a fixed terrestrial point
 - Radar dwell period is extended resulting high azimuth resolution



SAR Frequency bands of operation

Band	Frequency	Wavelength	Typical Application
Ка	27 – 40 GHz	1.1 – 0.8 cm	Rarely used for SAR (airport surveillance)
К	18 – 27 GHz	1.7 – 1.1 cm	rarely used (H ₂ O absorption)
Ku	12 – 18 GHz	2.4 – 1.7 cm	rarely used for SAR (satellite altimetry)
x	8 – 12 GHz	3.8 – 2.4 cm	High resolution SAR (urban monitoring,; ice and snow, little penetration into vegetation cover; fast coherence decay in vegetated areas)
С	4 – 8 GHz	7.5 – 3.8 cm	SAR Workhorse (global mapping; change detection; monitoring of areas with low to moderate penetration; higher coherence); ice, ocean maritime navigation
S	2 – 4 GHz	15 – 7.5 cm	Little but increasing use for SAR-based Earth observation; agriculture monitoring (NISAR will carry an S-band channel; expends C-band applications to higher vegetation density)
L	1 – 2 GHz	30 – 15 cm	Medium resolution SAR (geophysical monitoring; biomass and vegetation mapping; high penetration, InSAR)
P	0.3 1 GHz	100 30 cm	Biomass. First p-band spaceborne SAR will be launched ~2020; vegetation mapping and assessment. Experimental SAR.

Penetration Capability by Frequency Band

Commercialization of Imagery and SAR Intelligence

12

NRO, DARPA, & the War in Ukraine: Drivers of LEO commercial satellite intelligence

- NRO granted study contracts to five commercial SAR satellite companies:
 - Airbus's US arm
 - Capella Space California startup
 - Finnish firm ICEYE's US branch
 - Florida startup PredaSAR
 - California-based Umbra
- Equivalent DARPA program is enabling Imagery Sat companies
- Ukraine provided real time imagery by MAXAR and others

PredaSAR planned 96 satellite constellation

Commercial LEO SAR satellite constellations

Constellation:21 SatsFrequency Band:X-BandBandwidth:30 to 300 MzResolution:0.25 m

Port of Rotterdam (ICE EYE)

14

Constellation:30 Sats planedFrequency Band:X-BandBandwidth:0 to 500 MHzResolution:< 0.5 m</td>

Commercial LEO Imagery satellite constellations

Constellation:	TBD Sate	
Optical Res:	30 cm	
Infrared Res	~2 m	

RGB & Infrared Imaging (Albedo)

15

Constellation:	6+ Sats
Optical Res:	15 - 30 cm
Multispectral	0.15 - 2 m

Thank You

Questions/Comments Contact: <u>paul@struhsaker.com</u> Visit the Arrasar Web Page: <u>www.struhsaker.com/arrasar-partners</u> PDF download available at: <u>www.struhsaker.com/dystopic-science-stories</u>